Fusion of $q$-tensor operators: quasi-Hopf-algebraic point of view
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 107-129
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the fusion of tensor operators for $U_q(\mathscr J)$ by means of the $R$-matrix approach. The problem is reduced to construction of the twisting element $\mathscr J$ which appears in Drinfeld's description of quasi-Hopf algebras. The discussion is illustrated by explicit calculations for the case of $U_q(sl(2))$.
@article{ZNSL_1997_245_a5,
author = {A. G. Bytsko},
title = {Fusion of $q$-tensor operators: {quasi-Hopf-algebraic} point of view},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--129},
publisher = {mathdoc},
volume = {245},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a5/}
}
A. G. Bytsko. Fusion of $q$-tensor operators: quasi-Hopf-algebraic point of view. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 107-129. http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a5/