Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 247-269

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the stationary exterior problem for the equations of notion of a viscous compressible liquid uniquely solvable in weighted Hölder spaces, if exterior forces and the value of velocity at infinity are sufficiently small. As a weight function, a power function $(1+|x|)^{-m}$, $m>0$ is taken. The proof, which is carried out by the method of decomposition, relies on the estimates of sindular integers and of solutions of the transport equations in weighted spaces.
@article{ZNSL_1997_245_a13,
     author = {A. Novotny and P. Penel and V. A. Solonnikov},
     title = {Investigation of a~problem governing a~viscous compressible flow past a~body in {H\"older} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--269},
     publisher = {mathdoc},
     volume = {245},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/}
}
TY  - JOUR
AU  - A. Novotny
AU  - P. Penel
AU  - V. A. Solonnikov
TI  - Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 247
EP  - 269
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/
LA  - ru
ID  - ZNSL_1997_245_a13
ER  - 
%0 Journal Article
%A A. Novotny
%A P. Penel
%A V. A. Solonnikov
%T Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 247-269
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/
%G ru
%F ZNSL_1997_245_a13
A. Novotny; P. Penel; V. A. Solonnikov. Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 247-269. http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/