Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 247-269
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the stationary exterior problem for the equations of notion of a viscous compressible liquid uniquely solvable in weighted Hölder spaces, if exterior forces and the value of velocity at infinity are sufficiently small. As a weight function, a power function $(1+|x|)^{-m}$, $m>0$ is taken. The proof, which is carried out by the method of decomposition, relies on the estimates of sindular integers and of solutions of the transport equations in weighted spaces.
@article{ZNSL_1997_245_a13,
author = {A. Novotny and P. Penel and V. A. Solonnikov},
title = {Investigation of a~problem governing a~viscous compressible flow past a~body in {H\"older} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {247--269},
publisher = {mathdoc},
volume = {245},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/}
}
TY - JOUR AU - A. Novotny AU - P. Penel AU - V. A. Solonnikov TI - Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 247 EP - 269 VL - 245 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/ LA - ru ID - ZNSL_1997_245_a13 ER -
%0 Journal Article %A A. Novotny %A P. Penel %A V. A. Solonnikov %T Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces %J Zapiski Nauchnykh Seminarov POMI %D 1997 %P 247-269 %V 245 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/ %G ru %F ZNSL_1997_245_a13
A. Novotny; P. Penel; V. A. Solonnikov. Investigation of a~problem governing a~viscous compressible flow past a~body in H\"older spaces. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 247-269. http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a13/