Integrable equations for the partition function of the six vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 207-215
Cet article a éte moissonné depuis la source Math-Net.Ru
The partition function of the six vertex model with the domain wall boundary condition is considered in the homogeneous and inhomogeneous cases. The determinant representation allows to show that the partition function is a solution of the Toda equation in the homogeneous case and solution of the Hirota equation in the inhomogeneous case.
@article{ZNSL_1997_245_a10,
author = {A. G. Izergin and E. Karjalainen and N. A. Kitanin},
title = {Integrable equations for the partition function of the six vertex model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {207--215},
year = {1997},
volume = {245},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a10/}
}
TY - JOUR AU - A. G. Izergin AU - E. Karjalainen AU - N. A. Kitanin TI - Integrable equations for the partition function of the six vertex model JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 207 EP - 215 VL - 245 UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a10/ LA - ru ID - ZNSL_1997_245_a10 ER -
A. G. Izergin; E. Karjalainen; N. A. Kitanin. Integrable equations for the partition function of the six vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 207-215. http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a10/