Equations for probability distributions of local time on surface for diffusion processes and control problems
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 96-118
Voir la notice du chapitre de livre
The paper studies local time on surface for general $n$-dimensional diffusion process. Analogs of Kolmogorov–Fokker–Planck equations for the characteristic function and probability distributions of local time are derived and investigated for a wide class of $(n-1)$-dimensional surfaces. A general explicit formula which is an analog of the Tanaka formula is presented. Optimal control problems with functionals which depend on local time are investigated.
@article{ZNSL_1997_244_a5,
author = {N. G. Dokuchaev},
title = {Equations for probability distributions of local time on surface for diffusion processes and control problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--118},
year = {1997},
volume = {244},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a5/}
}
TY - JOUR AU - N. G. Dokuchaev TI - Equations for probability distributions of local time on surface for diffusion processes and control problems JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 96 EP - 118 VL - 244 UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a5/ LA - ru ID - ZNSL_1997_244_a5 ER -
N. G. Dokuchaev. Equations for probability distributions of local time on surface for diffusion processes and control problems. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 96-118. http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a5/