On a multidimensional generalization of the tomographic problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 295-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main result: if dimension of a Euclidean space with measure is high enough, only the first observation from the long series of observations with random independent choice of projection gives an essential information of the measure.
@article{ZNSL_1997_244_a20,
     author = {V. N. Sudakov},
     title = {On a multidimensional generalization of the tomographic problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {295--301},
     year = {1997},
     volume = {244},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a20/}
}
TY  - JOUR
AU  - V. N. Sudakov
TI  - On a multidimensional generalization of the tomographic problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 295
EP  - 301
VL  - 244
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a20/
LA  - ru
ID  - ZNSL_1997_244_a20
ER  - 
%0 Journal Article
%A V. N. Sudakov
%T On a multidimensional generalization of the tomographic problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 295-301
%V 244
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a20/
%G ru
%F ZNSL_1997_244_a20
V. N. Sudakov. On a multidimensional generalization of the tomographic problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 295-301. http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a20/