On a multidimensional generalization of the tomographic problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 295-301
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result: if dimension of a Euclidean space with measure is high enough, only the first observation from the long series of observations with random independent choice of projection gives an essential information of the measure.
@article{ZNSL_1997_244_a20,
author = {V. N. Sudakov},
title = {On a multidimensional generalization of the tomographic problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {295--301},
year = {1997},
volume = {244},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a20/}
}
V. N. Sudakov. On a multidimensional generalization of the tomographic problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 295-301. http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a20/