The estimation of a function being observed with a stationary error
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 271-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We suppose that we observe a process $y(t)$ when $t\in [-T,T]$, $$ y(t)\;=\;s(t)\;+\;x(t) \qquad (t \in [-T,T]), $$ where $s$ is an unknown function (which we must estimate), $x$ is a stationary noise. We compare the accuracy of the least-squares estimator $\bold s^*$ with the accuracy of the best linear unbiased estimator $\bold s^{\star}$.
@article{ZNSL_1997_244_a18,
     author = {V. N. Solev and L. Gerville-Reache},
     title = {The estimation of a function being observed with a stationary error},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {271--284},
     year = {1997},
     volume = {244},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a18/}
}
TY  - JOUR
AU  - V. N. Solev
AU  - L. Gerville-Reache
TI  - The estimation of a function being observed with a stationary error
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 271
EP  - 284
VL  - 244
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a18/
LA  - ru
ID  - ZNSL_1997_244_a18
ER  - 
%0 Journal Article
%A V. N. Solev
%A L. Gerville-Reache
%T The estimation of a function being observed with a stationary error
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 271-284
%V 244
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a18/
%G ru
%F ZNSL_1997_244_a18
V. N. Solev; L. Gerville-Reache. The estimation of a function being observed with a stationary error. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 271-284. http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a18/