A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 227-237

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate Bahadur local efficiency if the test of independence based on a generalization of the Kendall's rank correlation coefficient proposed by Kochar and Gupta in 1987. It is shown that this test is locally efficient for those alternatives to the independence hypothesis which are described by the Woodworth dependence function.
@article{ZNSL_1997_244_a15,
     author = {Ya. Yu. Nikitin and N. A. Stepanova},
     title = {A generalization of {Kendall's} tau and asymptotic efficiency of the corresponding test of independence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {227--237},
     publisher = {mathdoc},
     volume = {244},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a15/}
}
TY  - JOUR
AU  - Ya. Yu. Nikitin
AU  - N. A. Stepanova
TI  - A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 227
EP  - 237
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a15/
LA  - ru
ID  - ZNSL_1997_244_a15
ER  - 
%0 Journal Article
%A Ya. Yu. Nikitin
%A N. A. Stepanova
%T A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 227-237
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a15/
%G ru
%F ZNSL_1997_244_a15
Ya. Yu. Nikitin; N. A. Stepanova. A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 2, Tome 244 (1997), pp. 227-237. http://geodesic.mathdoc.fr/item/ZNSL_1997_244_a15/