On a global unique solvability of some two-dimensional problems for the water solutions of polymers
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 138-153
Cet article a éte moissonné depuis la source Math-Net.Ru
A global unique solvability of the two-dimensional unitial boundary value problem with some slip-boundary conditions for a quasilinear system describing the flows of weak water solutions of polymers is proved. It is noted that for this system a global unique solvability of the Cauchy problem and the initial boundary problem with the periodic boundary conditions are proved in a similar way.
@article{ZNSL_1997_243_a9,
author = {O. A. Ladyzhenskaya},
title = {On a global unique solvability of some two-dimensional problems for the water solutions of polymers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {138--153},
year = {1997},
volume = {243},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a9/}
}
TY - JOUR AU - O. A. Ladyzhenskaya TI - On a global unique solvability of some two-dimensional problems for the water solutions of polymers JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 138 EP - 153 VL - 243 UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a9/ LA - ru ID - ZNSL_1997_243_a9 ER -
O. A. Ladyzhenskaya. On a global unique solvability of some two-dimensional problems for the water solutions of polymers. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 138-153. http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a9/