The regularity theory for $(m,l)$-Laplacian parabolic equation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 87-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present results on regularity for generalized solutions of equations of the form \begin{equation} u_t-\operatorname{div}\{|u|^l|\nabla u|^{m-l}\nabla u\}=0, \quad m>1, \quad l>1-m, \tag{1} \end{equation} obtained recently by the author. We prove a local $L_\infty$ estimate for generalized solutions of this equation (1) under the following condition on the parameters $m$, $l$: \begin{equation} \frac{\sigma+1}{\sigma+2}>\frac1m-\frac1n, \quad \sigma=\frac l{m-1}, \quad m>1, \quad l>1-m. \tag{2} \end{equation} This condition was found by the author is a previous paper (Zapiski Nauchnykh Seminarov POMI, vol. 221, 83–113 (1995)). It was shown there that this condition is necessary for local boundedness of a generalized solution.
@article{ZNSL_1997_243_a5,
     author = {A. V. Ivanov},
     title = {The regularity theory for $(m,l)${-Laplacian} parabolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--110},
     year = {1997},
     volume = {243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a5/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - The regularity theory for $(m,l)$-Laplacian parabolic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 87
EP  - 110
VL  - 243
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a5/
LA  - en
ID  - ZNSL_1997_243_a5
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T The regularity theory for $(m,l)$-Laplacian parabolic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 87-110
%V 243
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a5/
%G en
%F ZNSL_1997_243_a5
A. V. Ivanov. The regularity theory for $(m,l)$-Laplacian parabolic equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 87-110. http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a5/