On the classical solvability of one-dimensional free boundary Florin, Muskat–Verigin and Stefan problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 30-60
Cet article a éte moissonné depuis la source Math-Net.Ru
Three one-dimensional free boundary problems (Florin, Muskat–Verigin and Stefan) for the second order parabolic equations are studied. The theorems of existence and uniqueness for the solutions in Holder spaces for small time are proved, the coercive estimates for the solutions are obtained.
@article{ZNSL_1997_243_a3,
author = {G. I. Bizhanova},
title = {On the classical solvability of one-dimensional free boundary {Florin,} {Muskat{\textendash}Verigin} and {Stefan} problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--60},
year = {1997},
volume = {243},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a3/}
}
TY - JOUR AU - G. I. Bizhanova TI - On the classical solvability of one-dimensional free boundary Florin, Muskat–Verigin and Stefan problems JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 30 EP - 60 VL - 243 UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a3/ LA - ru ID - ZNSL_1997_243_a3 ER -
G. I. Bizhanova. On the classical solvability of one-dimensional free boundary Florin, Muskat–Verigin and Stefan problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 30-60. http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a3/