On the existence of the harmonic variational flow subject to the two-sided conditions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 324-337 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We shall devote ourselves to a study of constructing the weak solutions to parabolic systems of the variational flow type associated with the quadratic functional with the initial and boundary data from a suitable Sobolev space, subject to the two-sided conditions. In order to do this, we shall present an approach made by extending Rothe's method which is useful for solving the Cauchy problem and the initial- boundary-value problems for many sorts of equations.
@article{ZNSL_1997_243_a16,
     author = {N. Kikuchi and J.-i. Haga},
     title = {On the existence of the harmonic variational flow subject to the two-sided conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {324--337},
     year = {1997},
     volume = {243},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a16/}
}
TY  - JOUR
AU  - N. Kikuchi
AU  - J.-i. Haga
TI  - On the existence of the harmonic variational flow subject to the two-sided conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 324
EP  - 337
VL  - 243
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a16/
LA  - en
ID  - ZNSL_1997_243_a16
ER  - 
%0 Journal Article
%A N. Kikuchi
%A J.-i. Haga
%T On the existence of the harmonic variational flow subject to the two-sided conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 324-337
%V 243
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a16/
%G en
%F ZNSL_1997_243_a16
N. Kikuchi; J.-i. Haga. On the existence of the harmonic variational flow subject to the two-sided conditions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 324-337. http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a16/