$L_p$-theory of the Stefan problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 299-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Local solvability of the one-phase Stefan problem is established in anisotropic Sobolev spaces. There is no loss of regularity. Hanzawa transformation of the Stefan problem to a problem in a domain with a fixed boundary is modified.
@article{ZNSL_1997_243_a15,
     author = {V. A. Solonnikov and E. V. Frolova},
     title = {$L_p$-theory of the {Stefan} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {299--323},
     year = {1997},
     volume = {243},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a15/}
}
TY  - JOUR
AU  - V. A. Solonnikov
AU  - E. V. Frolova
TI  - $L_p$-theory of the Stefan problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 299
EP  - 323
VL  - 243
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a15/
LA  - ru
ID  - ZNSL_1997_243_a15
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%A E. V. Frolova
%T $L_p$-theory of the Stefan problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 299-323
%V 243
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a15/
%G ru
%F ZNSL_1997_243_a15
V. A. Solonnikov; E. V. Frolova. $L_p$-theory of the Stefan problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 299-323. http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a15/