$L_p$-theory of the Stefan problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 299-323
Cet article a éte moissonné depuis la source Math-Net.Ru
Local solvability of the one-phase Stefan problem is established in anisotropic Sobolev spaces. There is no loss of regularity. Hanzawa transformation of the Stefan problem to a problem in a domain with a fixed boundary is modified.
@article{ZNSL_1997_243_a15,
author = {V. A. Solonnikov and E. V. Frolova},
title = {$L_p$-theory of the {Stefan} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {299--323},
year = {1997},
volume = {243},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a15/}
}
V. A. Solonnikov; E. V. Frolova. $L_p$-theory of the Stefan problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 299-323. http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a15/