Regularity for minimaizers of some variational problems in plasticity theory
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 270-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A variational problem for functionals depending on the symmetric part of the gradient of unknown vector-valued function is considered. We suppose that the integrand of the problem has the power growth with the exponent less then two. We prove summability of the second derivatives of minimizers near the boundary. In two-dimentional case Hölder continuity up to the boundary of the strain and stress tensors is established.
@article{ZNSL_1997_243_a14,
     author = {G. A. Seregin and T. N. Shilkin},
     title = {Regularity for minimaizers of some variational problems in plasticity theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {270--298},
     year = {1997},
     volume = {243},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a14/}
}
TY  - JOUR
AU  - G. A. Seregin
AU  - T. N. Shilkin
TI  - Regularity for minimaizers of some variational problems in plasticity theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 270
EP  - 298
VL  - 243
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a14/
LA  - ru
ID  - ZNSL_1997_243_a14
ER  - 
%0 Journal Article
%A G. A. Seregin
%A T. N. Shilkin
%T Regularity for minimaizers of some variational problems in plasticity theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 270-298
%V 243
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a14/
%G ru
%F ZNSL_1997_243_a14
G. A. Seregin; T. N. Shilkin. Regularity for minimaizers of some variational problems in plasticity theory. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Tome 243 (1997), pp. 270-298. http://geodesic.mathdoc.fr/item/ZNSL_1997_243_a14/