Diophantine representations of linear recurrent sequences.~II
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part X, Tome 241 (1997), pp. 5-29
Voir la notice de l'article provenant de la source Math-Net.Ru
Direct constructions of diophantine representations of linear recurrent sequences are considered. Diophantine representations of the sets of values of third-order sequences with negative discriminant are found. As an auxiliary problem we study the structure of the multiplicative group of the ring $\mathbb Z[\lambda]$, where $\lambda$ is an invertible algebraic number (unit) in a real quadratic field or in a cubic field of a negative discriminant. Tge index of the subgroup $\langle\pm\lambda^n\mid n\in\mathbf Z\rangle$ in the group $(\mathbf Z[\lambda])^*$ and the generator of $(\mathbf Z[\lambda])^*$ are evaluated explicitly.
@article{ZNSL_1997_241_a0,
author = {M. A. Vsemirnov},
title = {Diophantine representations of linear recurrent {sequences.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--29},
publisher = {mathdoc},
volume = {241},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_241_a0/}
}
M. A. Vsemirnov. Diophantine representations of linear recurrent sequences.~II. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part X, Tome 241 (1997), pp. 5-29. http://geodesic.mathdoc.fr/item/ZNSL_1997_241_a0/