Rooks on Ferrers boards and matrix integrals
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 136-146
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C(n,N)=\int_{H_N}\operatorname{tr}Z^{2n}\,\mu(dZ)$ denote a matrix integral by a $U(N)$-invariant gaussian measure $\mu$ on the space $H_N$ of hermitian $N\times{N}$ matrices. The integral is known to be always a positive integer. We derive a simple combinatorial interpretation of this integral in terms of rook
configurations on Ferrers boards. The formula
$$
C(n,N) = (2n - 1)!!
\sum_{k=0}^n \binom N{k+1}\binom nk\, 2^k
$$
found by J. Harer and D. Zagier follows from our interpretation immediately.
@article{ZNSL_1997_240_a9,
author = {S. V. Kerov},
title = {Rooks on {Ferrers} boards and matrix integrals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--146},
publisher = {mathdoc},
volume = {240},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a9/}
}
S. V. Kerov. Rooks on Ferrers boards and matrix integrals. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 136-146. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a9/