Rooks on Ferrers boards and matrix integrals
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 136-146

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C(n,N)=\int_{H_N}\operatorname{tr}Z^{2n}\,\mu(dZ)$ denote a matrix integral by a $U(N)$-invariant gaussian measure $\mu$ on the space $H_N$ of hermitian $N\times{N}$ matrices. The integral is known to be always a positive integer. We derive a simple combinatorial interpretation of this integral in terms of rook configurations on Ferrers boards. The formula $$ C(n,N) = (2n - 1)!! \sum_{k=0}^n \binom N{k+1}\binom nk\, 2^k $$ found by J. Harer and D. Zagier follows from our interpretation immediately.
@article{ZNSL_1997_240_a9,
     author = {S. V. Kerov},
     title = {Rooks on {Ferrers} boards and matrix integrals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--146},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a9/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - Rooks on Ferrers boards and matrix integrals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 136
EP  - 146
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a9/
LA  - ru
ID  - ZNSL_1997_240_a9
ER  - 
%0 Journal Article
%A S. V. Kerov
%T Rooks on Ferrers boards and matrix integrals
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 136-146
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a9/
%G ru
%F ZNSL_1997_240_a9
S. V. Kerov. Rooks on Ferrers boards and matrix integrals. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 136-146. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a9/