Two inequalities for parameters of a cellular algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 82-95
Voir la notice de l'article provenant de la source Math-Net.Ru
Two inequalities are proved. The first one generalizes for cellular algebras a well-known theorem about coincidence of the degree and the multiplicity of an irreducible representation of a finite group in the regular representation of it. The second inequality which is proved for primitive cellular algebras, gives an upper bound for the minimum subdegree of a primitive permutation group in terms of the degrees of its irreducible representations in the permuation representation.
@article{ZNSL_1997_240_a6,
author = {S. A. Evdokimov and I. N. Ponomarenko},
title = {Two inequalities for parameters of a cellular algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--95},
publisher = {mathdoc},
volume = {240},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a6/}
}
S. A. Evdokimov; I. N. Ponomarenko. Two inequalities for parameters of a cellular algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 82-95. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a6/