Asymptotically Gaussian distribution for random perturbations of rotations of the circle
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 78-81
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T_{\epsilon,\omega}$ be a self-map of the two dimensional torus $\mathbb T^2$ given by the formula
$T_{\epsilon,\omega}\colon(x,y)\to(2x,y+\omega+\epsilon x)\bmod1$. If $\epsilon$ is an irrational number, a version of the functional central limit theorem is formulated for variables of the form $n^{-1/2} \sum_{k=0}^{\infty}f \circ T^k_{\epsilon,\omega}$ where $f$ is a member of a class of real valued functions on $\mathbb T^2$ described in terms of $\epsilon$. The proof will be published elsewhere.
@article{ZNSL_1997_240_a5,
author = {M. I. Gordin and M. Denker},
title = {Asymptotically {Gaussian} distribution for random perturbations of rotations of the circle},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--81},
publisher = {mathdoc},
volume = {240},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a5/}
}
TY - JOUR AU - M. I. Gordin AU - M. Denker TI - Asymptotically Gaussian distribution for random perturbations of rotations of the circle JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 78 EP - 81 VL - 240 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a5/ LA - ru ID - ZNSL_1997_240_a5 ER -
M. I. Gordin; M. Denker. Asymptotically Gaussian distribution for random perturbations of rotations of the circle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 78-81. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a5/