Asymptotically Gaussian distribution for random perturbations of rotations of the circle
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 78-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T_{\epsilon,\omega}$ be a self-map of the two dimensional torus $\mathbb T^2$ given by the formula $T_{\epsilon,\omega}\colon(x,y)\to(2x,y+\omega+\epsilon x)\bmod1$. If $\epsilon$ is an irrational number, a version of the functional central limit theorem is formulated for variables of the form $n^{-1/2} \sum_{k=0}^{\infty}f \circ T^k_{\epsilon,\omega}$ where $f$ is a member of a class of real valued functions on $\mathbb T^2$ described in terms of $\epsilon$. The proof will be published elsewhere.
@article{ZNSL_1997_240_a5,
     author = {M. I. Gordin and M. Denker},
     title = {Asymptotically {Gaussian} distribution for random perturbations of rotations of the circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--81},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a5/}
}
TY  - JOUR
AU  - M. I. Gordin
AU  - M. Denker
TI  - Asymptotically Gaussian distribution for random perturbations of rotations of the circle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 78
EP  - 81
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a5/
LA  - ru
ID  - ZNSL_1997_240_a5
ER  - 
%0 Journal Article
%A M. I. Gordin
%A M. Denker
%T Asymptotically Gaussian distribution for random perturbations of rotations of the circle
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 78-81
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a5/
%G ru
%F ZNSL_1997_240_a5
M. I. Gordin; M. Denker. Asymptotically Gaussian distribution for random perturbations of rotations of the circle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 78-81. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a5/