Macdonald identities and multidimensional theta-functions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 67-77
Voir la notice de l'article provenant de la source Math-Net.Ru
A new proof of the combinatorial Macdonald identities is presented. It is shown that one may regard these identities as decomposition of multidimensional theta-functions into infinite products. The proof is pased on some analytical properties of theta-functions. It is discussed briefly now one may modify the proof in order to replace analytical reasonings by the formal ones involving only operations with formal series.
@article{ZNSL_1997_240_a4,
author = {M. A. Vsemirnov},
title = {Macdonald identities and multidimensional theta-functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--77},
publisher = {mathdoc},
volume = {240},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a4/}
}
M. A. Vsemirnov. Macdonald identities and multidimensional theta-functions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 67-77. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a4/