$C$-algebras and algebras in Plancherel duality
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 53-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For an arbitrary $C$-algebra (possibly non-commutative) a positivity condition generalizing the Krein condition for a commutative case is defined. We show that the class of positive $C$-algebras includes those arising in algebraic combinatorics from association schemes (possibly non-commutative). It is proved that the category of positive $C$-algebras is equivalent to the category of pairs of algebras in Plancherel duality one of which being commutative.
			
            
            
            
          
        
      @article{ZNSL_1997_240_a3,
     author = {A. M. Vershik and S. A. Evdokimov and I. N. Ponomarenko},
     title = {$C$-algebras and algebras in {Plancherel} duality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a3/}
}
                      
                      
                    TY - JOUR AU - A. M. Vershik AU - S. A. Evdokimov AU - I. N. Ponomarenko TI - $C$-algebras and algebras in Plancherel duality JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 53 EP - 66 VL - 240 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a3/ LA - ru ID - ZNSL_1997_240_a3 ER -
A. M. Vershik; S. A. Evdokimov; I. N. Ponomarenko. $C$-algebras and algebras in Plancherel duality. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 53-66. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a3/
