Distributions of the mean values for some random measures
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 268-279

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tau$ be a probability measure on $[0,1]$. We consider a generalization of the classic Dirichlet process – the random probability measure $F=\sum P_i\delta_{X_i}$, where $X=\{X_i\}$ is a sequence of independent random variables with the common distribution $\tau$ and $P=\{P_i\}$ is independent of $X$ and has the two-parameter Poisson–Dirichlet distribution $PD(\alpha,\theta)$ on the unit simplex. The main result is the formula connecting the distribution $\mu$ of the random mean value $\int x\,dF(x)$ with the parameter measure $\tau$.
@article{ZNSL_1997_240_a16,
     author = {N. V. Tsilevich},
     title = {Distributions of the mean values for some random measures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {268--279},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a16/}
}
TY  - JOUR
AU  - N. V. Tsilevich
TI  - Distributions of the mean values for some random measures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 268
EP  - 279
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a16/
LA  - ru
ID  - ZNSL_1997_240_a16
ER  - 
%0 Journal Article
%A N. V. Tsilevich
%T Distributions of the mean values for some random measures
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 268-279
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a16/
%G ru
%F ZNSL_1997_240_a16
N. V. Tsilevich. Distributions of the mean values for some random measures. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 268-279. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a16/