Distributions of the mean values for some random measures
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 268-279
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\tau$ be a probability measure on $[0,1]$. We consider a generalization of the classic Dirichlet process –
the random probability measure $F=\sum P_i\delta_{X_i}$, where $X=\{X_i\}$ is a sequence of independent random variables with the common distribution $\tau$ and $P=\{P_i\}$ is independent of $X$ and has the two-parameter Poisson–Dirichlet distribution $PD(\alpha,\theta)$ on the unit simplex. The main result is the formula connecting the distribution $\mu$ of the random mean value $\int x\,dF(x)$ with the parameter measure $\tau$.
@article{ZNSL_1997_240_a16,
author = {N. V. Tsilevich},
title = {Distributions of the mean values for some random measures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {268--279},
publisher = {mathdoc},
volume = {240},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a16/}
}
N. V. Tsilevich. Distributions of the mean values for some random measures. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 268-279. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a16/