On representations of the infinite symmetric group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 166-228
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove a classification theorem for admissible representation of the Gelfand pair $$ S(\infty)\times S(\infty)\supset\operatorname{diag}S(\infty) $$ and two other Gelfand pairs of hyperoctohedral type. We prove that the list of admissible representations given by G. Olshanski is complete. This generalizes Thoma's description of the characters of $S(\infty)$. An explicit construction for representations from a dense subset of the admissible dual was given by G. Olshanski. We construct the remaining representations using an operation we call the mixture of representations.
@article{ZNSL_1997_240_a12,
author = {A. Yu. Okounkov},
title = {On representations of the infinite symmetric group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--228},
year = {1997},
volume = {240},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/}
}
A. Yu. Okounkov. On representations of the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 166-228. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/