On representations of the infinite symmetric group
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 166-228
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove a classification theorem for admissible representation of the Gelfand pair
$$
S(\infty)\times S(\infty)\supset\operatorname{diag}S(\infty)
$$
and two other Gelfand pairs of hyperoctohedral type. We prove that the list of admissible representations given by G. Olshanski is complete. This generalizes Thoma's description of the characters of $S(\infty)$. An explicit construction for representations from a dense subset of the admissible dual was given by G. Olshanski. We construct the remaining representations using an operation we call the mixture of representations.
			
            
            
            
          
        
      @article{ZNSL_1997_240_a12,
     author = {A. Yu. Okounkov},
     title = {On representations of the infinite symmetric group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--228},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/}
}
                      
                      
                    A. Yu. Okounkov. On representations of the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 166-228. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/
