On representations of the infinite symmetric group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 166-228

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a classification theorem for admissible representation of the Gelfand pair $$ S(\infty)\times S(\infty)\supset\operatorname{diag}S(\infty) $$ and two other Gelfand pairs of hyperoctohedral type. We prove that the list of admissible representations given by G. Olshanski is complete. This generalizes Thoma's description of the characters of $S(\infty)$. An explicit construction for representations from a dense subset of the admissible dual was given by G. Olshanski. We construct the remaining representations using an operation we call the mixture of representations.
@article{ZNSL_1997_240_a12,
     author = {A. Yu. Okounkov},
     title = {On representations of the infinite symmetric group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--228},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/}
}
TY  - JOUR
AU  - A. Yu. Okounkov
TI  - On representations of the infinite symmetric group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 166
EP  - 228
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/
LA  - ru
ID  - ZNSL_1997_240_a12
ER  - 
%0 Journal Article
%A A. Yu. Okounkov
%T On representations of the infinite symmetric group
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 166-228
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/
%G ru
%F ZNSL_1997_240_a12
A. Yu. Okounkov. On representations of the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 166-228. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a12/