Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 18-43
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for a typical stricly uppertriangular matrix of order $n$ over a finite field with $q$ elements the sequence of orders of Jordan blocks, divided by $n$, converges to the geometric progression $\{(q-1)q^{-k},\,k=1, 2,\dots\}$, $n\to\infty$. We also show that the distribution of orders for a finite number of Jordan blocks is asymptotically normal. The corresponding covariance matrix is calculated.
@article{ZNSL_1997_240_a1,
author = {A. M. Borodin},
title = {Law of large numbers and central limit theorem for {Jordan} normal form of large triangular matrices over a finite field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--43},
publisher = {mathdoc},
volume = {240},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/}
}
TY - JOUR AU - A. M. Borodin TI - Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 18 EP - 43 VL - 240 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/ LA - ru ID - ZNSL_1997_240_a1 ER -
%0 Journal Article %A A. M. Borodin %T Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field %J Zapiski Nauchnykh Seminarov POMI %D 1997 %P 18-43 %V 240 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/ %G ru %F ZNSL_1997_240_a1
A. M. Borodin. Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 18-43. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/