Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 18-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for a typical stricly uppertriangular matrix of order $n$ over a finite field with $q$ elements the sequence of orders of Jordan blocks, divided by $n$, converges to the geometric progression $\{(q-1)q^{-k},\,k=1, 2,\dots\}$, $n\to\infty$. We also show that the distribution of orders for a finite number of Jordan blocks is asymptotically normal. The corresponding covariance matrix is calculated.
@article{ZNSL_1997_240_a1,
     author = {A. M. Borodin},
     title = {Law of large numbers and central limit theorem for {Jordan} normal form of large triangular matrices over a finite field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--43},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/}
}
TY  - JOUR
AU  - A. M. Borodin
TI  - Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 18
EP  - 43
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/
LA  - ru
ID  - ZNSL_1997_240_a1
ER  - 
%0 Journal Article
%A A. M. Borodin
%T Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 18-43
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/
%G ru
%F ZNSL_1997_240_a1
A. M. Borodin. Law of large numbers and central limit theorem for Jordan normal form of large triangular matrices over a finite field. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 18-43. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a1/