The homology of infinite-dimensional Lie algebras in connection with Macdonald identity
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

D. Fuchs' monograph devoted to the cohomology of infinite-dimensional Lie algebras contains an error in calculating the homology of graded affine Kac–Moody algebra of type $A_n^{(1)}$, so that the proof of the corresponding Macdonald identity which is based on that calculation appears to be incorrect. In the present paper the corrected proof is suggested.
@article{ZNSL_1997_240_a0,
     author = {Yu. M. Bazlov},
     title = {The homology of infinite-dimensional {Lie} algebras in connection with {Macdonald} identity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a0/}
}
TY  - JOUR
AU  - Yu. M. Bazlov
TI  - The homology of infinite-dimensional Lie algebras in connection with Macdonald identity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 5
EP  - 17
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a0/
LA  - ru
ID  - ZNSL_1997_240_a0
ER  - 
%0 Journal Article
%A Yu. M. Bazlov
%T The homology of infinite-dimensional Lie algebras in connection with Macdonald identity
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 5-17
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a0/
%G ru
%F ZNSL_1997_240_a0
Yu. M. Bazlov. The homology of infinite-dimensional Lie algebras in connection with Macdonald identity. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a0/