Diffraction of the whispering gallery waves near the line of the curvature jump
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 95-109

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonhomogeneous elastic body with a stress-free boundary is considered. The boundary consists of two smooth cylindrical surfaces with a continuous tangent plane but a discontinuity of the curvature on the junction line. \par The behaviour of the two kinds of the whispering gallery transversal surface waves passing through the junction line is studied. The displacement vector of the first kind (the Dirichlet boundary condition) wave is normal to the boundary and the displacement vector of the second kind (the Neumann boundary condition) wave is tangent to the boundary and normal to the ray, similar to the displacement vector of the Love waves.
@article{ZNSL_1997_239_a7,
     author = {N. Ya. Kirpichnikova and V. B. Philippov},
     title = {Diffraction of the whispering gallery waves near the line of the curvature jump},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--109},
     publisher = {mathdoc},
     volume = {239},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a7/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
AU  - V. B. Philippov
TI  - Diffraction of the whispering gallery waves near the line of the curvature jump
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 95
EP  - 109
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a7/
LA  - ru
ID  - ZNSL_1997_239_a7
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%A V. B. Philippov
%T Diffraction of the whispering gallery waves near the line of the curvature jump
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 95-109
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a7/
%G ru
%F ZNSL_1997_239_a7
N. Ya. Kirpichnikova; V. B. Philippov. Diffraction of the whispering gallery waves near the line of the curvature jump. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 95-109. http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a7/