Transparent boundaries for the parabolic wave equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 211-217

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper was to find an exact form of boundary conditions providing full absorption of arbitrary paraxial wave packets described by the parabolic equation. It would enable us to reduce rigorously an infinite domain to a strip or cylinder for numerical calculations. We proposed a general approach to this problem and demonstrated some practical examples.
@article{ZNSL_1997_239_a16,
     author = {A. V. Popov},
     title = {Transparent boundaries for the parabolic wave equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {211--217},
     publisher = {mathdoc},
     volume = {239},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a16/}
}
TY  - JOUR
AU  - A. V. Popov
TI  - Transparent boundaries for the parabolic wave equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 211
EP  - 217
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a16/
LA  - ru
ID  - ZNSL_1997_239_a16
ER  - 
%0 Journal Article
%A A. V. Popov
%T Transparent boundaries for the parabolic wave equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 211-217
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a16/
%G ru
%F ZNSL_1997_239_a16
A. V. Popov. Transparent boundaries for the parabolic wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 211-217. http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a16/