Viscoelastic Love waves in a layered structure with a weak lateral inhomogeneity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 7-11

Voir la notice de l'article provenant de la source Math-Net.Ru

High frequency Love surface waves are considered in a linear medium with Maxwell–Boltzmann–Volterra anelasticity. Vertical dependecies of the material parameters are rather arbitrary. Weak lateral inhomogeneity as well as anelasticity which is small for high frequencies are treated by perturbation. The leading term of the ray expansion which corresponds to the energy balance along real surface rays is given. Additional components, i.e., the Rayleigh-type components of the displacement described by a higher-order correction are discussed.
@article{ZNSL_1997_239_a0,
     author = {A. V. Aref'ev and A. P. Kiselev},
     title = {Viscoelastic {Love} waves in a layered structure with a weak lateral inhomogeneity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--11},
     publisher = {mathdoc},
     volume = {239},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a0/}
}
TY  - JOUR
AU  - A. V. Aref'ev
AU  - A. P. Kiselev
TI  - Viscoelastic Love waves in a layered structure with a weak lateral inhomogeneity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 7
EP  - 11
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a0/
LA  - ru
ID  - ZNSL_1997_239_a0
ER  - 
%0 Journal Article
%A A. V. Aref'ev
%A A. P. Kiselev
%T Viscoelastic Love waves in a layered structure with a weak lateral inhomogeneity
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 7-11
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a0/
%G ru
%F ZNSL_1997_239_a0
A. V. Aref'ev; A. P. Kiselev. Viscoelastic Love waves in a layered structure with a weak lateral inhomogeneity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 7-11. http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a0/