Radial projection and the Poincaré metric
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 14, Tome 237 (1997), pp. 148-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some estimates for the Poincaré metric of a planar domain are obtained in terms of the radial projection of the complement of the domain onto the unit circle. These estimates allow us, in particular, to strengthen the well-known Lavrent'ev theorem on the product of conformal radii of nonoverlapping domains. The proofs use the polarization transformation.
@article{ZNSL_1997_237_a11,
     author = {A. Yu. Solynin},
     title = {Radial projection and the {Poincar\'e} metric},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--160},
     year = {1997},
     volume = {237},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a11/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Radial projection and the Poincaré metric
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 148
EP  - 160
VL  - 237
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a11/
LA  - ru
ID  - ZNSL_1997_237_a11
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Radial projection and the Poincaré metric
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 148-160
%V 237
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a11/
%G ru
%F ZNSL_1997_237_a11
A. Yu. Solynin. Radial projection and the Poincaré metric. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 14, Tome 237 (1997), pp. 148-160. http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a11/