Ordering of sets, hyperbolic metric, and harmonic measure
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 14, Tome 237 (1997), pp. 129-147
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish a series of inequalities which relate solutions to certain partial differential equations defined on a given system of open sets with similar solutions defined on the ordered system of sets. As a corollary, we prove a comparison theorem for the hyperbolic metric that allows us to interpret this metric as a Choquet capacity. Using a similar comparison theorem for harmonic measures, we give a solution to S. Segawa's problem on the set having the minimal harmonic measure among all compact sets that lie on the diameter of the unit disk and have a given linear measure.
@article{ZNSL_1997_237_a10,
     author = {A. Yu. Solynin},
     title = {Ordering of sets, hyperbolic metric, and harmonic measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--147},
     year = {1997},
     volume = {237},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a10/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Ordering of sets, hyperbolic metric, and harmonic measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 129
EP  - 147
VL  - 237
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a10/
LA  - ru
ID  - ZNSL_1997_237_a10
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Ordering of sets, hyperbolic metric, and harmonic measure
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 129-147
%V 237
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a10/
%G ru
%F ZNSL_1997_237_a10
A. Yu. Solynin. Ordering of sets, hyperbolic metric, and harmonic measure. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 14, Tome 237 (1997), pp. 129-147. http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a10/