Krull dimension of the module category over right noetherian serial rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 73-86
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a right noetherian serial ring $R$ which is not artinian, it is proved that the Krull dimension of the category of finitely generated right $R$-modules equals one.
@article{ZNSL_1997_236_a7,
     author = {A. I. Generalov},
     title = {Krull dimension of the module category over right noetherian serial rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--86},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a7/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - Krull dimension of the module category over right noetherian serial rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 73
EP  - 86
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a7/
LA  - ru
ID  - ZNSL_1997_236_a7
ER  - 
%0 Journal Article
%A A. I. Generalov
%T Krull dimension of the module category over right noetherian serial rings
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 73-86
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a7/
%G ru
%F ZNSL_1997_236_a7
A. I. Generalov. Krull dimension of the module category over right noetherian serial rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 73-86. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a7/

[1] M. Auslander, “Coherent functors”, Proc. of the Conf. on Categorical Algebra (La Jolla, 1965), Springer, 1966, 189–231 | MR

[2] W. Geigle, “Krull dimension and artin algebras”, Lect. Notes Math., 1177, 1986, 135–155 | MR | Zbl

[3] M. Auslander, “Representation theory of artin algebras, II”, Commun. Algebra, 1:4 (1974), 269–310 | DOI | MR | Zbl

[4] W. Geigle, “The Krull–Gabriel dimension of the representation theory of a tame hereditary artin algebras and applications to the structure of exact sequences”, Manuscr. Math., 54:1/2 (1985), 83–106 | DOI | MR | Zbl

[5] Yu. A. Drozd, “Ob obobschenno odnoryadnykh koltsakh”, Matem. zametki, 18:5 (1975), 705–710 | MR | Zbl

[6] G. O. Michler, “Structure of semi-pekfect hereditary noetherian rings”, J. Algebra, 13:3 (1969), 327–344 | DOI | MR | Zbl

[7] V. V. Kirichenko, Obobschenno odnoryadnye koltsa, Preprint IM-75-1, In-t Mat. AN USSR, Kiev, 1975

[8] V. V. Kirichenko, “Obobschenno odnoryadnye koltsa”, Matem. sb., 99:4 (1976), 559–581 | MR | Zbl

[9] S. Singh, “Serial right noetherian rings”, Canad J. Math., 36:1 (1984), 22–37 | DOI | MR | Zbl

[10] R. B. Warfield, “Serial rings and finitely presented modules”, J. Algebra, 37:2 (1975), 187–222 | DOI | MR | Zbl

[11] P. Gabriel, “Auslander–Reiten sequences and representation-finite algebras”, Lect. Notes Math., 831, 1980, 1–71 | MR | Zbl

[12] A. I. Generalov, “Induktivno zamknutye sobstvennye klassy nad ogranichennymi $hnp$-koltsami”, Algebra i logika, 25:4 (1986), 384–404 | MR | Zbl

[13] A. I. Generalov, “Sobstvennye klassy korotkikh tochnykh posledovatelnostei nad neterovymi polutsepnymi koltsami”, Koltsa i moduli, Predel. teoremy teor. ver., I, Leningrad, 1986, 87–102 | MR

[14] A. I. Generalov, “Gruppy Grotendika i korotkie tochnye posledovatelnosti nad neterovymi koltsami”, Abelevy gruppy i moduli, 9, Tomsk, 1990, 7–30 | MR | Zbl

[15] C. M. Ringel, Tame algebras and integral quadratic forms, Lect. Notes Math., 1099, 1984 | MR | Zbl

[16] P. Gabriel, “Des catégories abeliennes”, Bull. Soc. Math. France, 90:3 (1962), 323–448 | MR | Zbl

[17] D. Eisenbud and J. C. Robson, “Hereditary noetherian prime rings”, J. Algebra, 16:1 (1970), 86–104 | DOI | MR | Zbl