The numbers of representations of elements of $GF(p)$ as sums of $l$th degrees
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 68-72
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The numbers of representations of elements of the field $GF(p)$ as sums of invertible $l$ degrees are calculated in this paper under the condition that each $l$ degree occurs in the sum less than $k$ times. The problem reduces to some calculations in cyclotomic fields. The results obtained are formulated in elementary form.
@article{ZNSL_1997_236_a6,
     author = {S. V. Vostokov and P. M. Vinnik},
     title = {The numbers of representations of elements of $GF(p)$ as sums of $l$th degrees},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--72},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a6/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - P. M. Vinnik
TI  - The numbers of representations of elements of $GF(p)$ as sums of $l$th degrees
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 68
EP  - 72
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a6/
LA  - ru
ID  - ZNSL_1997_236_a6
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A P. M. Vinnik
%T The numbers of representations of elements of $GF(p)$ as sums of $l$th degrees
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 68-72
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a6/
%G ru
%F ZNSL_1997_236_a6
S. V. Vostokov; P. M. Vinnik. The numbers of representations of elements of $GF(p)$ as sums of $l$th degrees. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 68-72. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a6/

[1] G. V. Abramov, P. M. Vinnik, “Vychislenie chisla predstavlenii elementov koltsa $\mathbb Z/d\mathbb Z$ v vide summy kvadratov”, Zap. nauchn. semin. POMI, 227, 1995, 5–8 | MR | Zbl

[2] L. C. Washington, Introduction to cyclotomic fields, New York, 1982 | MR