Comparison of the specrta. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 50-67
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The spectral Selberg conjecture is proved in a new version, i.e., for a congruence group with a nontrivial myltiplier.
@article{ZNSL_1997_236_a5,
     author = {A. I. Vinogradov},
     title = {Comparison of the {specrta.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {50--67},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a5/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - Comparison of the specrta. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 50
EP  - 67
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a5/
LA  - ru
ID  - ZNSL_1997_236_a5
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T Comparison of the specrta. II
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 50-67
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a5/
%G ru
%F ZNSL_1997_236_a5
A. I. Vinogradov. Comparison of the specrta. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 50-67. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a5/

[1] A. I. Vinogradov, “Sravnenie spektrov”, Zap. Nauchn. Semin. POMI, 228, 1996, 67–76 | MR | Zbl

[2] V. Bykovsky, N. Kuznetsov, A. Vinogradov, “Generalized summation formula for ingomogeneous convolution”, International conference automorphic function and their application (27 June – 4 Jule, 1988), Khabarovsk, 18–64 | MR

[3] A. I. Vinogradov, “Spektralnoe razlozhenie v raznykh vershinakh”, Zap. Nauchn. Semin. POMI, 224, 1995, 129–146

[4] G. Shimura, Introduction to the arithmetic theory of automorphic functions, 1971 ; 1973 | MR | MR

[5] J.-M. Deshenillers, H. Jwaniec, “Klostermann sums and Fourier coefficients of cusp-forms”, Inventiones Math., 70:2 (1982), 219–288 | DOI | MR

[6] A. I. Vinogradov, “Neodnorodnye svertki Rankina”, Zap. Nauchn. Semin. POMI, 226, 1996, 37–51 | MR | Zbl

[7] H. Jwanice, “Small eigenvalues of Laplacian for $\Gamma_0(N)$”, Acta Arithmetica, 56:1 (1990), 65–82 | MR