Computational Group Theory in St. Petersburg
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 42-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the history of Computational Group Theory in St. Petersburg. Some features of the scientific area are pointed out. We mention here some results of A. I. Skopin concerned with computations in Burnside groups of small prime-power exponents as well as A. V. Rukolaune's work on computation of ordinary characters of some finite simple groups. The note is dedicated to the 70th anniversary of A. I. Skopin's birthday.
@article{ZNSL_1997_236_a4,
     author = {N. A. Vavilov and V. I. Mysovskikh and Yu. G. Teterin},
     title = {Computational {Group} {Theory} in {St.} {Petersburg}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--49},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a4/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - V. I. Mysovskikh
AU  - Yu. G. Teterin
TI  - Computational Group Theory in St. Petersburg
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 42
EP  - 49
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a4/
LA  - ru
ID  - ZNSL_1997_236_a4
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A V. I. Mysovskikh
%A Yu. G. Teterin
%T Computational Group Theory in St. Petersburg
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 42-49
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a4/
%G ru
%F ZNSL_1997_236_a4
N. A. Vavilov; V. I. Mysovskikh; Yu. G. Teterin. Computational Group Theory in St. Petersburg. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 42-49. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a4/

[1] F. A. Ivanov, A. I. Skopin, “Maksimalnaya 2-porozhdennaya transmetabeleva gruppa pervogo tipa eksponenty 9”, Algebra i analiz, 2:6 (1990), 150–160 | MR | Zbl

[2] A. I. Kostrikin, “O probleme Bernsaida”, Dokl. AN SSSR, 119:6 (1958), 1081–1084 | MR | Zbl

[3] A. V. Rukolaine, “Vychislenie kompleksnykh kharakterov konechnykh grupp s pomoschyu EVM”, X Vsesoyuznyi simpozium po teorii grupp, Tezisy dokladov, Gomel, 1986, 199

[4] A. V. Rukolaine, “Vychislenie kompleksnykh kharakterov konechnykh grupp s pomoschyu EVM. II”, XI Vsesoyuznyi simpozium po teorii grupp, Tezisy soobschenii, Sverdlovsk, 1989, 100–101

[5] A. I. Skopin, “O sobiratelnoi formule”, Zap. nauchn. semin. LOMI, 46, 1974, 59–63 | MR | Zbl

[6] A. I. Skopin, “O sootnosheniyakh v gruppakh eksponenty 8”, Zap. nauchn. semin. LOMI, 57, 1976, 129–169 | MR | Zbl

[7] A. I. Skopin, “Transmetabelevy gruppy”, Zap. nauchn. semin. LOMI, 75, 1978, 159–163 | MR | Zbl

[8] A. I. Skopin, “Metabeleva gruppa eksponenty 9 s dvumya obrazuyuschimi”, Zap. nauchn. semin. LOMI, 103, 1980, 124–131 | MR | Zbl

[9] A. I. Skopin, “Faktory nilpotentnogo ryada nekotorykh metabelevykh grupp primarnoi eksponenty”, Zap. nauchn. semin. LOMI, 132, 1983, 129–163 | MR | Zbl

[10] A. I. Skopin, “Issledovanie na BESM-6 struktury nilpotentnogo ryada metabelevoi 2-porozhdennoi gruppy eksponenty 27”, Zap. nauchn. semin. LOMI, 160, 1987, 247–256 | MR

[11] A. I. Skopin, “O realizatsii vychislenii na EVM v transmetabelevykh gruppakh”, Vestn. LGU. Ser. 1, 1988, no. 1, 20–23 | MR | Zbl

[12] A. I. Skopin, “Tozhdestvo Yakobi i sobiratelnaya formula F. Kholla v transmetabelevykh gruppakh dvukh tipov”, Zap. nauchn. semin. LOMI, 175, 1989, 106–112 | MR

[13] A. I. Skopin, “Nizhnii tsentralnyi ryad maksimalnoi 2-porozhdennoi transmetabelevoi gruppy I tipa eksponenty 8”, Algebra i analiz, 2:5 (1990), 197–219 | MR | Zbl

[14] A. I. Skopin, “Bazisy svobodnykh metabelevykh i transmetabelevykh grupp”, Zap. nauchn. semin. LOMI, 191, 1991, 126–139 | MR

[15] A. I. Skopin, “Graficheskoe postroenie sobiratelnoi formuly dlya nekotorykh tipov grupp”, Zap. nauchn. semin. LOMI, 191, 1991, 140–151 | MR | Zbl

[16] A. I. Skopin, Yu. G. Teterin, “Uskorenie algorifma postroeniya sobiratelnoi formuly F. Kholla”, Zap. nauchn. semin. POMI, 227, 1995, 106–112 | MR

[17] A. L. Shmelkin, “Svobodnye polinilpotentnye gruppy”, Izv. AN SSSR. Ser mat., 28:1 (1964), 91–122 | MR

[18] S. Bachmuth, H. Heilbroun, and H. Y. Mochisuki, “Metabelian Burnside groups”, Proc. Roy. Soc. London. Ser. A, 307 (1968), 235–250 | DOI | MR | Zbl

[19] B. Huppert, N. Blackburn, Finite Groups, II, Springer-Verlag, 1982, 531 pp. | MR

[20] H. Pahlings, “Computing with characters of finite groups”, Acta Appl. Math., 21 (1990), 41–56 | DOI | MR | Zbl

[21] A. V. Rukolaine, “Root characters in computer calculations with complex characters of some sporadic simple groups”, Intern. Algebraic Conf. dedicated to the memory of D. K. Faddeev, Abstracts, St. Petersburg, 1997, 109–111

[22] M. Schönert et al, GAP – Groups, Algorithms and Programming, Lehrstuhl $D$ für Mathematik, RWTH, Aachen, 1994

[23] A. Seress, “An Introduction to Computational Group Theory”, Notices AMS, 44:6 (1997), 671–679 | MR | Zbl

[24] Ch. C. Sims, Computation with finitely presented groups, Cambrige University Press, 1994 | MR