On some 2-extension of the field~$\mathbb Q$ of rational numbers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 192-196

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the field $\mathbb Q$ of rational numbers has one and only one normal 2-extension $\mathbb Q_{(2,\infty)}/\mathbb Q$ with the groupe isomorphic to $Z_2*\mathbb Z/2$. If $\Omega$ the maximal subfield of a real-closed field not contain in $\sqrt 2$, then the algebraic closure $\overline\Omega$ is isomorphic to the field $\Omega\underset{\mathbb Q}{\otimes}\mathbb Q_{(2,\infty)}$.
@article{ZNSL_1997_236_a21,
     author = {V. M. Tsvetkov},
     title = {On some 2-extension of the field~$\mathbb Q$ of rational numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {192--196},
     publisher = {mathdoc},
     volume = {236},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a21/}
}
TY  - JOUR
AU  - V. M. Tsvetkov
TI  - On some 2-extension of the field~$\mathbb Q$ of rational numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 192
EP  - 196
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a21/
LA  - ru
ID  - ZNSL_1997_236_a21
ER  - 
%0 Journal Article
%A V. M. Tsvetkov
%T On some 2-extension of the field~$\mathbb Q$ of rational numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 192-196
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a21/
%G ru
%F ZNSL_1997_236_a21
V. M. Tsvetkov. On some 2-extension of the field~$\mathbb Q$ of rational numbers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 192-196. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a21/