Trigonometrical algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 183-191
Cet article a éte moissonné depuis la source Math-Net.Ru
Euclidean $n$-dimensional spaces that have an analog of a vector product, i.e., a bilinear binary operation satisfying the identity $|x\cdot y|^2+(x,y)^2=|x|^2\cdot|y|^2$ ($(\cdot,\cdot)$ is a scalar product). It is clarified for which $n$ such a product exists.
@article{ZNSL_1997_236_a20,
author = {P. A. Terekhin},
title = {Trigonometrical algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--191},
year = {1997},
volume = {236},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a20/}
}
P. A. Terekhin. Trigonometrical algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 183-191. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a20/
[1] I. L. Kantor, A. S. Solodovnikov, Giperkompleksnye chisla, Nauka, Moskva, 1973 | MR