On the normal structure of the general linear group over a ring
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 166-182
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is devoted to investigation of the normal subgroups of the general linear group over a ring and centrality of the extension $\mathrm{St}(n,R)\to E(n,R)$. The notions of the standard commutator formula and the standard normal structure of $\mathrm{GL}(n,R)$, $\mathrm{E}(n,R)$, and $\mathrm{St}(n,R)$ and their relationships are discussed. In particular, it is shown that the normality of $\mathrm{E}(n,R)$ in $\mathrm{GL}(n,R)$ and the standard distribution of subgroups normalized by $\mathrm{E}(n,R)$ follow from some conditions of linear dependence in $R$. Also, it is proved that the standardness of the normal structure of $\mathrm{GL}(n,R)$ and centrality of $K_2(n,R)$ in $\mathrm{St}(n,R)$ follow from the same conditions over a quotient ring $R/I$ provided $\mathrm{sr}I\le n-1$. Under some additional assumptions (e.g. $I$ is contained in the Jacobson radical of $R$) the converse is also true. The standard tecnique due to H. Bass, Z. I. Borevich, N. A. Vavilov, L. N. Vaserstein, W. van der Kallen, A. A. Suslin, M. S. Tulenbaev, and others is used and developed in the article.
@article{ZNSL_1997_236_a19,
     author = {A. V. Stepanov},
     title = {On the normal structure of the general linear group over a~ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--182},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a19/}
}
TY  - JOUR
AU  - A. V. Stepanov
TI  - On the normal structure of the general linear group over a ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 166
EP  - 182
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a19/
LA  - ru
ID  - ZNSL_1997_236_a19
ER  - 
%0 Journal Article
%A A. V. Stepanov
%T On the normal structure of the general linear group over a ring
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 166-182
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a19/
%G ru
%F ZNSL_1997_236_a19
A. V. Stepanov. On the normal structure of the general linear group over a ring. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 166-182. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a19/

[1] Kh. Bass, Algebraicheskaya $K$-teoriya, Mir, M., 1973, 591 pp. | MR | Zbl

[2] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Trudy Mat. in-ta Akad. Nauk SSSR, 165, 1984, 24–42 | MR

[3] L. N. Vasershtein, “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. Analiz i ego prilozheniya, 5:2 (1971), 102–110 | Zbl

[4] V. N. Gerasimov, “Gruppa edinits svobodnoigo proizvedeniya kolets”, Mat. sb., 134:1 (1987), 42–65 | MR | Zbl

[5] I. Z. Golubchik, “O polnoi lineinoi gruppe nad assotsiativnym koltsom”, Uspekhi Mat. Nauk, 28:3 (1973), 179–180 | MR | Zbl

[6] Dzh. Milnor, Vvedenie v algebraicheskuyu $K$-teoriyu, Nauka, M., 1974, 197 pp. | MR

[7] A. V. Stepanov, “Koltso konechnogo stabilnogo ranga ne obyazatelno konechno po Dedekindu”, Dokl. Akad. Nauk SSSR, 296:3 (1987), 546–549

[8] A. V. Stepanov, “O raspolozhenii podgrupp, normalizuemykh fiksirovannoi”, Zap. Nauchn. Semin. POMI, 198, 1991, 92–102 | MR | Zbl

[9] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. Akad. Nauk SSSR, 41:2 (1977), 235–252 | MR | Zbl

[10] A. A. Suslin, M. S. Tulenbaev, “Teorema o stabilnosti dlya $K_2$-funktora Milnora”, Zap. Nauchn. Semin. LOMI, 64, 1976, 131–152 | MR | Zbl

[11] A. Bak, “Nonabelian $K$-theory: The nilpotent class of $K_1$ and general stability”, $K$-theory, 4 (1991), 363–397 | DOI | MR | Zbl

[12] H. Bass, “The stable structure of quite general linear groups”, Bull. Amer. Math. Soc., 70:3 (1964), 430–434 | MR

[13] H. Bass, “$K$-theory and stable algebra”, Publ. Math. IHES, 22 (1964), 5–60 | MR | Zbl

[14] D. L. Costa, G. Keller, “The $\mathrm{E}(2,A)$ sections of $\mathrm{SL}(2,A)$”, Ann. Math., 134 (1991), 159–188 | DOI | MR | Zbl

[15] C. W. Curtis, I. Reiner, Methods of representations theory, vol. 2, J. Wiley and Sons, New York, 1987 | MR | Zbl

[16] A. J. Hahn, O. T. O'Meara, The classical groups and $K$-theory, Springer, Berlin et al., 1989, 576 pp. | MR

[17] W. van der Kallen, “Another presentation for the Steinberg group”, Proc. Nederl. Akad. Wetensch., Ser. A, 80 (1977), 304–312 | MR | Zbl

[18] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[19] L. N. Vaserstein, “On normal subgroups of $\mathrm{GL}_n$ over a ring”, Lect. Notes in Math., 854, 1981, 456–465 | MR | Zbl

[20] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima – 1990), World Sci. Publ., Singapore et al., 1991, 219–335 | MR | Zbl

[21] J. S. Wilson, “The normal and subnrmal structure of general linear groups”, Proc. Cambr. Phil. Soc., 71 (1972), 163–177 | DOI | MR | Zbl