Ergodic properties of flows for classes of positive binary quadratic forms in Gauss genera
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 149-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Further development and refinement of previous results of A. V. Malyshev and the author concerning so-called discrete ergodic method of Yu. V. Linnik. An “ergodic theorem” and “mixing theorem” for flows of positive binary quadratic forms is proven, those describe the asymptotic distribution of the coefficients of these forms on residue classes and on the corresponding surface.
@article{ZNSL_1997_236_a17,
     author = {U. M. Pachev},
     title = {Ergodic properties of flows for classes of positive binary quadratic forms in {Gauss} genera},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--161},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a17/}
}
TY  - JOUR
AU  - U. M. Pachev
TI  - Ergodic properties of flows for classes of positive binary quadratic forms in Gauss genera
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 149
EP  - 161
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a17/
LA  - ru
ID  - ZNSL_1997_236_a17
ER  - 
%0 Journal Article
%A U. M. Pachev
%T Ergodic properties of flows for classes of positive binary quadratic forms in Gauss genera
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 149-161
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a17/
%G ru
%F ZNSL_1997_236_a17
U. M. Pachev. Ergodic properties of flows for classes of positive binary quadratic forms in Gauss genera. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 149-161. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a17/

[1] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, M., 1972, 495 pp. | MR

[2] B. A. Venkov, Elementarnaya teoriya chisel, ONTI, M.–L., 1937, 219 pp.

[3] Yu. V. Linnik, “Asimptoticheskaya geometriya gaussovykh rodov; analog ergodicheskoi teoremy”, DAN SSSR, 108:6 (1956), 1018–1021 | MR | Zbl

[4] Yu. V. Linnik, Izbrannye trudy. Teoriya chisel. Ergodicheskii metod i $L$-funktsii, L., 1979, 432 pp. | MR | Zbl

[5] A. V. Malyshev, “O primenenii diskretnogo ergodicheskogo metoda v analiticheskoi arifmetike neopredelennykh ternarnykh kvadratichnykh form”, Zap. nauchn. semin. POMI, 93, 1980, 5–24 | MR | Zbl

[6] A. V. Malyshev, “Ob arifmetike matrits vtorogo poryadka”, Zap. nauchn. semin. POMI, 93, 1980, 41–86 | MR | Zbl

[7] A. V. Malyshev, U. M. Pachev, Ergodicheskie svoistva tselykh tochek na nekotorykh dvupolostnykh giperboloidakh, Dep. VINITI No. 6127, Nalchik, 1984, 43 pp. | MR

[8] U. M. Pachev, “Asimptoticheskie raspredeleniya gaussovykh rodov”, Avtomorfnye funktsii i teoriya chisel, Sb. nauch. tr., Izhevsk, 1987, 32–40 | MR

[9] U. M. Pachev, Ob ostatochnykh chlenakh i ergodicheskikh teoremakh dlya potokov v gaussovykh rodakh, Dep. VINITI No. 3246, Nalchik, 1992, 29 pp.

[10] K. Prakhar, Raspredelenie prostykh chisel, M., 1967, 512 pp.

[11] H. Iwaniec, “Fourier coefficients of modular forms of halfintergal weight”, Invent. math., 87 (1987), 385–401 | DOI | MR | Zbl

[12] W. Duke, “Hyperbolic distribution problems and half-intergal weight Maass forms”, Invent. math., 92 (1988), 73–90 | DOI | MR | Zbl