Ergodic properties of flows for classes of positive binary quadratic forms in Gauss genera
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 149-161
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Further development and refinement of previous results of A. V. Malyshev and the author concerning so-called discrete ergodic method of Yu. V. Linnik. An “ergodic theorem” and “mixing theorem” for flows of positive binary quadratic forms is proven, those describe the asymptotic distribution of the coefficients of these forms on residue classes and on the corresponding surface.
			
            
            
            
          
        
      @article{ZNSL_1997_236_a17,
     author = {U. M. Pachev},
     title = {Ergodic properties of flows for classes of positive binary quadratic forms in {Gauss} genera},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--161},
     publisher = {mathdoc},
     volume = {236},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a17/}
}
                      
                      
                    TY - JOUR AU - U. M. Pachev TI - Ergodic properties of flows for classes of positive binary quadratic forms in Gauss genera JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 149 EP - 161 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a17/ LA - ru ID - ZNSL_1997_236_a17 ER -
U. M. Pachev. Ergodic properties of flows for classes of positive binary quadratic forms in Gauss genera. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 149-161. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a17/
