Embedding properties of non-primary subgroups of the symmetric group of degree eight
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 124-128
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to investigation of some subgroup embedding properties for 110 subgroups of the symmetric group on eight letters. We deal with those non-primary subgroups whose degree is exactly eight. The results were obtained by using of the computer algebra system GAP. They are summarized in a form of the table. We found out that every polynormal subgroup is at the same time also paranormal.
@article{ZNSL_1997_236_a14,
     author = {V. I. Mysovskikh and A. I. Skopin},
     title = {Embedding properties of non-primary subgroups of the symmetric group of degree eight},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--128},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a14/}
}
TY  - JOUR
AU  - V. I. Mysovskikh
AU  - A. I. Skopin
TI  - Embedding properties of non-primary subgroups of the symmetric group of degree eight
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 124
EP  - 128
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a14/
LA  - ru
ID  - ZNSL_1997_236_a14
ER  - 
%0 Journal Article
%A V. I. Mysovskikh
%A A. I. Skopin
%T Embedding properties of non-primary subgroups of the symmetric group of degree eight
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 124-128
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a14/
%G ru
%F ZNSL_1997_236_a14
V. I. Mysovskikh; A. I. Skopin. Embedding properties of non-primary subgroups of the symmetric group of degree eight. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 124-128. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a14/

[1] M. S. Ba, Z. I. Borevich, “O raspolozhenii promezhutochnykh podgrupp”, Koltsa i lineinye gruppy, Sb. nauchn. trudov, Krasnodar, 1988, 14–41 | MR

[2] Z. I. Borevich, “O raspolozhenii podgrupp”, Zap. nauchn. semin. LOMI, 94, 1979, 5–12 | MR | Zbl

[3] Z. I. Borevich, O. N. Matsedonskaya, “O reshetke podgrupp”, Zap. nauchn. semin. LOMI, 103, 1980, 13–19 | MR | Zbl

[4] P. V. Gavron, L. Yu. Kolotilina, “O podgruppakh v $T$-gruppakh”, Zap. nauchn. semin. LOMI, 103, 1980, 62–65 | MR | Zbl

[5] P. V. Gavron, V. I. Mysovskikh, “O podgruppakh simmetricheskikh grupp stepeni ne prevoskhodyaschei semi”, Koltsa i matrichnye gruppy, Sb. nauchn. trudov, Ordzhonikidze, 1984, 35–42

[6] V. I. Mysovskikh, Polinormalnye podgruppy, Dissertatsiya, Leningrad, 1990

[7] V. I. Mysovskikh, “Testirovanie podgrupp konechnoi gruppy na svoistva vlozheniya tipa pronormalnosti”, Zap. nauchn. semin. POMI, 236, 1997, 119–123 | MR | Zbl

[8] K. Doerk, T. Hawkes, Finite soluble groups, Berlin–New York, 1992 | MR

[9] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967 | MR | Zbl

[10] G. A. Miller, “Memoir on the substitution-groups whose degree does not exceed eight”, Am. J. Math., 21 (1899), 287–338 | DOI | MR | Zbl

[11] K. H. Müller, “Schwachnormale Untergruppen:eine gemeinsame Verallgemeinerung der normalen und normalizatorgleichen Untergruppen”, Rend. Semin. Mat. Univ. Padova, 36 (1966), 129–157 | MR | Zbl

[12] M. Schönert et al., GAP – Groups, Algorithms and Programming, fifth edition, Lehrstuhl D für Mathematik, RWTH, Aachen, Germany, 1995