On the lattice of subgroups normalized by a symmetric one in the complete monomial group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 111-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a lattice of subgroups normalized by a symmetric group $S_n$ in the complete monomial group $G=H\wr S_n$ where $H$ is an arbitrary (finite or infinite) group. It is shown that for $n\ge3$ the subgroup is strongly paranormal in this wreath product for any $H$. A similar result is obtained for an alternating group $A_n$, $n\ge4$. The property of strong paranormality for $D$ in $G$ means that for any element $x\in G$ the commutator identity $[[x,D],D]=[x,D]$ holds. That condition garantees a standard arrangement of subgroups of $G$ normalized by $D$.
@article{ZNSL_1997_236_a12,
     author = {V. I. Mysovskikh},
     title = {On the lattice of subgroups normalized by a~symmetric one in the complete monomial group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--118},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a12/}
}
TY  - JOUR
AU  - V. I. Mysovskikh
TI  - On the lattice of subgroups normalized by a symmetric one in the complete monomial group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 111
EP  - 118
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a12/
LA  - ru
ID  - ZNSL_1997_236_a12
ER  - 
%0 Journal Article
%A V. I. Mysovskikh
%T On the lattice of subgroups normalized by a symmetric one in the complete monomial group
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 111-118
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a12/
%G ru
%F ZNSL_1997_236_a12
V. I. Mysovskikh. On the lattice of subgroups normalized by a symmetric one in the complete monomial group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 111-118. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a12/

[1] M. S. Ba, Z. I. Borevich, “O raspolozhenii promezhutochnykh podgrupp”, Koltsa i lineinye gruppy, Sb. nauchn. trudov, Krasnodar, 1988, 14–41 | MR

[2] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. LOMI, 64, 1976, 12–29 | Zbl

[3] Z. I. Borevich, “O raspolozhenii podgrupp”, Zap. nauchn. semin. LOMI, 94, 1979, 5–12 | MR | Zbl

[4] Z. I. Borevich, V. A. Koibaev, Chan Ngok Khoi, “Reshetki podgrupp v $GL(2,\mathbb Q)$, soderzhaschikh nerasschepimyi tor”, Zap. nauchn. semin. LOMI, 191, 1991, 24–43 | Zbl

[5] Z. I. Borevich, O. N. Matsedonskaya, “O reshetke podgrupp”, Zap. nauchn. semin. LOMI, 103, 1980, 13–19 | MR | Zbl

[6] Z. I. Borevich, V. I. Mysovskikh, “Beskonechnye tsepi posledovatelnykh normalizatorov v polnoi lineinoi gruppe nad polem”, Zap. nauchn. semin. LOMI, 191, 1991, 44–48 | MR | Zbl

[7] V. A. Koibaev, “Opisanie $D$-polnykh podgrupp v polnoi lineinoi gruppe nad polem iz trekh elementov”, Zap. nauchn. semin. LOMI, 103, 1980, 76–78 | MR | Zbl

[8] V. I. Mysovskikh, “Paranormalnost simmetricheskoi gruppy v spleteniyakh”, Vestn. LGU, Ser. 1, vyp. 4, 1989, no. 22, 25–28 | MR | Zbl

[9] V. I. Mysovskikh, “O teoretiko-gruppovom metode issledovaniya funktsii $k$-znachnoi logiki”, Vestn. SPbGU, Ser. 1, vyp. 1, 1996, no. 1, 50–53 | MR | Zbl

[10] V. I. Mysovskikh, A. V. Stepanov, “O raspolozhenii podgrupp v polupryamom proizvedenii”, Izvestiya LETI. Sb. nauchn. trudov, 449, S.-Peterburg, 1992, 77–79

[11] A. V. Stepanov, “O raspolozhenii podgrupp, normalizuemykh fiksirovannoi”, Zap. nauchn. semin. LOMI, 198, 1991, 92–102 | MR | Zbl

[12] K. Doerk and T. Hawkes, Finite soluble groups, Berlin-New York, 1992 | MR | Zbl

[13] B. Huppert, Endliche Gruppen I, Berlin-Heidelberg-New York, 1967 | MR | Zbl

[14] V. I. Mysovskikh, A survey on the lattices of intermediate subgroups and some subgroup embedding properties, unpublished manuscript, 1996

[15] P. M. Neumann, “On the structure of standard wreath products of groups”, Math. Z., 84 (1964), 343–373 | DOI | MR | Zbl

[16] R. Schmidt, Subgroup lattices of groups, De Gruyter, 1994 | MR | Zbl

[17] M. Suzuki, Group theory II, Springer-Verlag, 1986 | MR