A compatibility condition for the embedding problem with $p$-extension
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 100-105
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Embedding problems with a group and its Sylow $p$-subgroup over a $p$-extension are considered. A Faddeev–Hasse compatibility condition for this problem are studied. It is proved that the compatibility condition for the problems considered are equivalent if the kernel is a supersolvable group or the Sylow $p$-subgroup is an invariant subgroup.
@article{ZNSL_1997_236_a10,
     author = {V. V. Ishkhanov and B. B. Lur'e},
     title = {A compatibility condition for the embedding problem with $p$-extension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {100--105},
     year = {1997},
     volume = {236},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a10/}
}
TY  - JOUR
AU  - V. V. Ishkhanov
AU  - B. B. Lur'e
TI  - A compatibility condition for the embedding problem with $p$-extension
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 100
EP  - 105
VL  - 236
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a10/
LA  - ru
ID  - ZNSL_1997_236_a10
ER  - 
%0 Journal Article
%A V. V. Ishkhanov
%A B. B. Lur'e
%T A compatibility condition for the embedding problem with $p$-extension
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 100-105
%V 236
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a10/
%G ru
%F ZNSL_1997_236_a10
V. V. Ishkhanov; B. B. Lur'e. A compatibility condition for the embedding problem with $p$-extension. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 5, Tome 236 (1997), pp. 100-105. http://geodesic.mathdoc.fr/item/ZNSL_1997_236_a10/

[1] B. N. Delone, D. K. Faddeev, “Issledovaniya po geometrii teorii Galua”, Mat. sb., 15:2 (1944), 243–284 | Zbl

[2] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, Moskva, 1990, 272 pp. | MR | Zbl

[3] M. Kholl, Teoriya grupp, IL, Moskva, 1962, 468 pp.