$Q$-Deformation of Virasoro algebra and lattice conformal theories
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 217-227

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural definition of the $q$-deformation of the Virasoro and superconformal algebras is suggesteded. New Liealgebraic symmetries describe a lattice version of the continual theory. A close link between the deformation constructed in this paper and the lattice version of the Faddeev–Takhtadjian–Volkov Virasaro algebra is shown. Bibl. 18 titles.
@article{ZNSL_1996_235_a9,
     author = {A. A. Belov and K. D. Chaltikian},
     title = {$Q${-Deformation} of {Virasoro} algebra and lattice conformal theories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {217--227},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a9/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - K. D. Chaltikian
TI  - $Q$-Deformation of Virasoro algebra and lattice conformal theories
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 217
EP  - 227
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a9/
LA  - en
ID  - ZNSL_1996_235_a9
ER  - 
%0 Journal Article
%A A. A. Belov
%A K. D. Chaltikian
%T $Q$-Deformation of Virasoro algebra and lattice conformal theories
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 217-227
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a9/
%G en
%F ZNSL_1996_235_a9
A. A. Belov; K. D. Chaltikian. $Q$-Deformation of Virasoro algebra and lattice conformal theories. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 217-227. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a9/