Qualitative investigation of the three phase solutions of sine-Laplace equation
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 199-216
Voir la notice de l'article provenant de la source Math-Net.Ru
Real three-phase solutions of the sine-Laplace equation are constructed. All smooth and singular real doubly periodic solutions are found. The corresponding three-dimensional theta functions are reduced to the elliptic Jacobi functions. Some classes of solutions with symmetries giving possibilities for physical applications are determined. Bibl. 19 titles.
@article{ZNSL_1996_235_a8,
author = {M. V. Babich and L. A. Bordag},
title = {Qualitative investigation of the three phase solutions of {sine-Laplace} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--216},
publisher = {mathdoc},
volume = {235},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a8/}
}
TY - JOUR AU - M. V. Babich AU - L. A. Bordag TI - Qualitative investigation of the three phase solutions of sine-Laplace equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 199 EP - 216 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a8/ LA - en ID - ZNSL_1996_235_a8 ER -
M. V. Babich; L. A. Bordag. Qualitative investigation of the three phase solutions of sine-Laplace equation. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 199-216. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a8/