Homology and cohomology of hypersurfaces with quadratic singular points in generic position
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 193-198

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate the homology groups of hypersurfaces in $CP^{n+1}$, $n\ge3$, with fixed number and, maybe, position of singular points and sufficiently high degree. In the case of quadratic singularities, we use the results of the calculations to give a topological description (as specific as possible) of such a hypersurface by means of decomposing it into a connected sum. In this case the topological type of the hypersurface is determined by its dimension, degree, and the number of singular points. Bibl. 7 titles.
@article{ZNSL_1996_235_a7,
     author = {Nikita Yu. Netsvetaev},
     title = {Homology and cohomology of hypersurfaces with quadratic singular points in generic position},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--198},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a7/}
}
TY  - JOUR
AU  - Nikita Yu. Netsvetaev
TI  - Homology and cohomology of hypersurfaces with quadratic singular points in generic position
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 193
EP  - 198
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a7/
LA  - en
ID  - ZNSL_1996_235_a7
ER  - 
%0 Journal Article
%A Nikita Yu. Netsvetaev
%T Homology and cohomology of hypersurfaces with quadratic singular points in generic position
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 193-198
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a7/
%G en
%F ZNSL_1996_235_a7
Nikita Yu. Netsvetaev. Homology and cohomology of hypersurfaces with quadratic singular points in generic position. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 193-198. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a7/