Homology and cohomology of hypersurfaces with quadratic singular points in generic position
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 193-198
Voir la notice de l'article provenant de la source Math-Net.Ru
We calculate the homology groups of hypersurfaces in $CP^{n+1}$, $n\ge3$, with fixed number and, maybe, position of singular points and sufficiently high degree. In the case of quadratic singularities, we use the results of the calculations to give a topological description (as specific as possible) of such a hypersurface by means of decomposing it into a connected sum. In this case the topological type of the hypersurface is determined by its dimension, degree, and the number of singular points. Bibl. 7 titles.
@article{ZNSL_1996_235_a7,
author = {Nikita Yu. Netsvetaev},
title = {Homology and cohomology of hypersurfaces with quadratic singular points in generic position},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--198},
publisher = {mathdoc},
volume = {235},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a7/}
}
TY - JOUR AU - Nikita Yu. Netsvetaev TI - Homology and cohomology of hypersurfaces with quadratic singular points in generic position JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 193 EP - 198 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a7/ LA - en ID - ZNSL_1996_235_a7 ER -
Nikita Yu. Netsvetaev. Homology and cohomology of hypersurfaces with quadratic singular points in generic position. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 193-198. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a7/