Non-degenerate systems and generic properties of the integrable Hamiltonian systems
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 184-192
Cet article a éte moissonné depuis la source Math-Net.Ru
The goal of the paper is to clarify whether the non-degenerate Hamiltinian systems are “typical” among all integrable systems. The importance of this problem is emphasized by a theorem of Fomenko–Zieschang, in which an isoenergy invariant determining the nondegenerate systems up to topological equivalence is constructed. Bibl. 12 titles.
@article{ZNSL_1996_235_a6,
author = {V. V. Kalashnikov},
title = {Non-degenerate systems and generic properties of the integrable {Hamiltonian} systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {184--192},
year = {1996},
volume = {235},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/}
}
V. V. Kalashnikov. Non-degenerate systems and generic properties of the integrable Hamiltonian systems. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 184-192. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/