Non-degenerate systems and generic properties of the integrable Hamiltonian systems
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 184-192

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of the paper is to clarify whether the non-degenerate Hamiltinian systems are “typical” among all integrable systems. The importance of this problem is emphasized by a theorem of Fomenko–Zieschang, in which an isoenergy invariant determining the nondegenerate systems up to topological equivalence is constructed. Bibl. 12 titles.
@article{ZNSL_1996_235_a6,
     author = {V. V. Kalashnikov},
     title = {Non-degenerate systems and generic properties of the integrable {Hamiltonian} systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--192},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/}
}
TY  - JOUR
AU  - V. V. Kalashnikov
TI  - Non-degenerate systems and generic properties of the integrable Hamiltonian systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 184
EP  - 192
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/
LA  - en
ID  - ZNSL_1996_235_a6
ER  - 
%0 Journal Article
%A V. V. Kalashnikov
%T Non-degenerate systems and generic properties of the integrable Hamiltonian systems
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 184-192
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/
%G en
%F ZNSL_1996_235_a6
V. V. Kalashnikov. Non-degenerate systems and generic properties of the integrable Hamiltonian systems. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 184-192. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/