Non-degenerate systems and generic properties of the integrable Hamiltonian systems
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 184-192
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The goal of the paper is to clarify whether the non-degenerate Hamiltinian systems are “typical” among all integrable systems. The importance of this problem is emphasized by a theorem of Fomenko–Zieschang, in which an isoenergy invariant determining the nondegenerate systems up to topological equivalence is constructed. Bibl. 12 titles.
			
            
            
            
          
        
      @article{ZNSL_1996_235_a6,
     author = {V. V. Kalashnikov},
     title = {Non-degenerate systems and generic properties of the integrable {Hamiltonian} systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--192},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/}
}
                      
                      
                    V. V. Kalashnikov. Non-degenerate systems and generic properties of the integrable Hamiltonian systems. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 184-192. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a6/
