Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 104-183

Voir la notice de l'article provenant de la source Math-Net.Ru

Physical and mechanical systems with four-dimensional phase space are considered. The classification of nondegenerate integral systems is studied. A “physical zone”, i.e., the systems connected with real physical applications, is determined. Bibl. 27 titles.
@article{ZNSL_1996_235_a5,
     author = {A. T. Fomenko},
     title = {Symplectic topology of integrable dynamical systems. {Rough} topological classification of classical cases of integrability in the dynamics of a~heavy rigid body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--183},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 104
EP  - 183
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/
LA  - en
ID  - ZNSL_1996_235_a5
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 104-183
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/
%G en
%F ZNSL_1996_235_a5
A. T. Fomenko. Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 104-183. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/