Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 104-183
Voir la notice de l'article provenant de la source Math-Net.Ru
Physical and mechanical systems with four-dimensional phase space are considered. The classification of nondegenerate integral systems is studied. A “physical zone”, i.e., the systems connected with real physical applications, is determined. Bibl. 27 titles.
@article{ZNSL_1996_235_a5,
author = {A. T. Fomenko},
title = {Symplectic topology of integrable dynamical systems. {Rough} topological classification of classical cases of integrability in the dynamics of a~heavy rigid body},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--183},
publisher = {mathdoc},
volume = {235},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/}
}
TY - JOUR AU - A. T. Fomenko TI - Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 104 EP - 183 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/ LA - en ID - ZNSL_1996_235_a5 ER -
%0 Journal Article %A A. T. Fomenko %T Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body %J Zapiski Nauchnykh Seminarov POMI %D 1996 %P 104-183 %V 235 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/ %G en %F ZNSL_1996_235_a5
A. T. Fomenko. Symplectic topology of integrable dynamical systems. Rough topological classification of classical cases of integrability in the dynamics of a~heavy rigid body. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 104-183. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a5/