Integrable systems, Poisson pencils, and hyperelliptic Lax pairs
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 87-103
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new Lax pair for the multidimensional Manakov system on the Lie algebra $\mathrm{so}(m)$ with a spectral parameter defined on a certain unramified covering of a hyperelliptic curve is considered. For the Clebsh–Perelomov system on the Lie algebra $e(n)$, similar pairs are presented. Multidimensional analogs of the classical integrable Steklov–Lyapunov system describing a motion of a rigid body in an ideal fluid are found. Bibl. 15 titles.
			
            
            
            
          
        
      @article{ZNSL_1996_235_a4,
     author = {Yu. Fedorov},
     title = {Integrable systems, {Poisson} pencils, and hyperelliptic {Lax} pairs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a4/}
}
                      
                      
                    Yu. Fedorov. Integrable systems, Poisson pencils, and hyperelliptic Lax pairs. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 87-103. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a4/
