Integrable systems, Poisson pencils, and hyperelliptic Lax pairs
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 87-103

Voir la notice de l'article provenant de la source Math-Net.Ru

A new Lax pair for the multidimensional Manakov system on the Lie algebra $\mathrm{so}(m)$ with a spectral parameter defined on a certain unramified covering of a hyperelliptic curve is considered. For the Clebsh–Perelomov system on the Lie algebra $e(n)$, similar pairs are presented. Multidimensional analogs of the classical integrable Steklov–Lyapunov system describing a motion of a rigid body in an ideal fluid are found. Bibl. 15 titles.
@article{ZNSL_1996_235_a4,
     author = {Yu. Fedorov},
     title = {Integrable systems, {Poisson} pencils, and hyperelliptic {Lax} pairs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a4/}
}
TY  - JOUR
AU  - Yu. Fedorov
TI  - Integrable systems, Poisson pencils, and hyperelliptic Lax pairs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 87
EP  - 103
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a4/
LA  - en
ID  - ZNSL_1996_235_a4
ER  - 
%0 Journal Article
%A Yu. Fedorov
%T Integrable systems, Poisson pencils, and hyperelliptic Lax pairs
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 87-103
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a4/
%G en
%F ZNSL_1996_235_a4
Yu. Fedorov. Integrable systems, Poisson pencils, and hyperelliptic Lax pairs. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 87-103. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a4/