Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 54-86
Voir la notice de l'article provenant de la source Math-Net.Ru
The goal of the present paper is to describe the topological structure of integrable Hamiltonian systems in saturated neighborhoods of singular points of the momentum mapping. Bibl. 21 titles.
@article{ZNSL_1996_235_a3,
author = {A. V. Bolsinov and V. S. Matveev},
title = {Singularities of momentum maps of integrable {Hamiltonian} systems with two degrees of freedom},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--86},
publisher = {mathdoc},
volume = {235},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a3/}
}
TY - JOUR AU - A. V. Bolsinov AU - V. S. Matveev TI - Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 54 EP - 86 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a3/ LA - en ID - ZNSL_1996_235_a3 ER -
A. V. Bolsinov; V. S. Matveev. Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 54-86. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a3/