Statistical mechanics of nonlinear wave equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 287-294
Voir la notice de l'article provenant de la source Math-Net.Ru
The recurrences of initial states for nonlinear wave equations of the form $\square Q+f(Q)=0$ with odd $f$ are studied. The main result refines and generalizes the investigations of Friedlander and is related to the Poincaré theorem for finite dimensional Hamiltonian systems. Bibl. 7 titles.
@article{ZNSL_1996_235_a15,
author = {H. P. McKean and K. L. Vaninsky},
title = {Statistical mechanics of nonlinear wave equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {287--294},
publisher = {mathdoc},
volume = {235},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a15/}
}
H. P. McKean; K. L. Vaninsky. Statistical mechanics of nonlinear wave equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 287-294. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a15/