Statistical mechanics of nonlinear wave equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 287-294

Voir la notice de l'article provenant de la source Math-Net.Ru

The recurrences of initial states for nonlinear wave equations of the form $\square Q+f(Q)=0$ with odd $f$ are studied. The main result refines and generalizes the investigations of Friedlander and is related to the Poincaré theorem for finite dimensional Hamiltonian systems. Bibl. 7 titles.
@article{ZNSL_1996_235_a15,
     author = {H. P. McKean and K. L. Vaninsky},
     title = {Statistical mechanics of nonlinear wave equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {287--294},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a15/}
}
TY  - JOUR
AU  - H. P. McKean
AU  - K. L. Vaninsky
TI  - Statistical mechanics of nonlinear wave equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 287
EP  - 294
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a15/
LA  - en
ID  - ZNSL_1996_235_a15
ER  - 
%0 Journal Article
%A H. P. McKean
%A K. L. Vaninsky
%T Statistical mechanics of nonlinear wave equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 287-294
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a15/
%G en
%F ZNSL_1996_235_a15
H. P. McKean; K. L. Vaninsky. Statistical mechanics of nonlinear wave equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 287-294. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a15/