Semiclassical electron motion and Novikov conjecture
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 228-234
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of nonclosed trajectories of semiclassical electron motion in a crystal in a weak constant and uniform magnetic field of irrationality degree 3 is considered. It is proved that two cases can exist. In the first case the set of energy levels which contain nonclosed trajectories is a closed interval and any regular nonclosed trajectory lies in a finite-wide stripe and comes through it in one direction. In the other case, there is only one energy level containing nonclosed trajectories. Bibl. 5 titles.
@article{ZNSL_1996_235_a10,
author = {I. A. Dynnikov},
title = {Semiclassical electron motion and {Novikov} conjecture},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {228--234},
publisher = {mathdoc},
volume = {235},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a10/}
}
I. A. Dynnikov. Semiclassical electron motion and Novikov conjecture. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 228-234. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a10/