Semiclassical electron motion and Novikov conjecture
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 228-234

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of nonclosed trajectories of semiclassical electron motion in a crystal in a weak constant and uniform magnetic field of irrationality degree 3 is considered. It is proved that two cases can exist. In the first case the set of energy levels which contain nonclosed trajectories is a closed interval and any regular nonclosed trajectory lies in a finite-wide stripe and comes through it in one direction. In the other case, there is only one energy level containing nonclosed trajectories. Bibl. 5 titles.
@article{ZNSL_1996_235_a10,
     author = {I. A. Dynnikov},
     title = {Semiclassical electron motion and {Novikov} conjecture},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {228--234},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a10/}
}
TY  - JOUR
AU  - I. A. Dynnikov
TI  - Semiclassical electron motion and Novikov conjecture
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 228
EP  - 234
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a10/
LA  - en
ID  - ZNSL_1996_235_a10
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%T Semiclassical electron motion and Novikov conjecture
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 228-234
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a10/
%G en
%F ZNSL_1996_235_a10
I. A. Dynnikov. Semiclassical electron motion and Novikov conjecture. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 228-234. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a10/