On the topology of an integrable variant of a~nonholonomic Suslov problem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 7-21
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The topology of a new intagrable version of a nonholonomic Suslov problem is considered. It is shown that the integral manifolds are either Liouville tori with quasiperiodic windings or closed two-dimensional surfaces almost all trajectories on which are closed. Bibl. 18 titles.
			
            
            
            
          
        
      @article{ZNSL_1996_235_a1,
     author = {E. V. Anoshkina and T. L. Kunii and G. G. Okuneva and Y. Shinagawa},
     title = {On the topology of an integrable variant of a~nonholonomic {Suslov} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/}
}
                      
                      
                    TY - JOUR AU - E. V. Anoshkina AU - T. L. Kunii AU - G. G. Okuneva AU - Y. Shinagawa TI - On the topology of an integrable variant of a~nonholonomic Suslov problem JO - Zapiski Nauchnykh Seminarov POMI PY - 1996 SP - 7 EP - 21 VL - 235 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/ LA - en ID - ZNSL_1996_235_a1 ER -
%0 Journal Article %A E. V. Anoshkina %A T. L. Kunii %A G. G. Okuneva %A Y. Shinagawa %T On the topology of an integrable variant of a~nonholonomic Suslov problem %J Zapiski Nauchnykh Seminarov POMI %D 1996 %P 7-21 %V 235 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/ %G en %F ZNSL_1996_235_a1
E. V. Anoshkina; T. L. Kunii; G. G. Okuneva; Y. Shinagawa. On the topology of an integrable variant of a~nonholonomic Suslov problem. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/
