On the topology of an integrable variant of a~nonholonomic Suslov problem
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 7-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The topology of a new intagrable version of a nonholonomic Suslov problem is considered. It is shown that the integral manifolds are either Liouville tori with quasiperiodic windings or closed two-dimensional surfaces almost all trajectories on which are closed. Bibl. 18 titles.
@article{ZNSL_1996_235_a1,
     author = {E. V. Anoshkina and T. L. Kunii and G. G. Okuneva and Y. Shinagawa},
     title = {On the topology of an integrable variant of a~nonholonomic {Suslov} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/}
}
TY  - JOUR
AU  - E. V. Anoshkina
AU  - T. L. Kunii
AU  - G. G. Okuneva
AU  - Y. Shinagawa
TI  - On the topology of an integrable variant of a~nonholonomic Suslov problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 7
EP  - 21
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/
LA  - en
ID  - ZNSL_1996_235_a1
ER  - 
%0 Journal Article
%A E. V. Anoshkina
%A T. L. Kunii
%A G. G. Okuneva
%A Y. Shinagawa
%T On the topology of an integrable variant of a~nonholonomic Suslov problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 7-21
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/
%G en
%F ZNSL_1996_235_a1
E. V. Anoshkina; T. L. Kunii; G. G. Okuneva; Y. Shinagawa. On the topology of an integrable variant of a~nonholonomic Suslov problem. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a1/