On a~simple invariant of Turaev--Viro type
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 137-142

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a 3-manifold invariant $t(M)=a+b\varepsilon$, where $a,b$ are integers and $\varepsilon=(1\pm\sqrt5)/2$. An advantage of the invariant is that it admits a very simple interpretation in terms of a fake surface and a simple geometric proof of the invariance. Actually, it coincides with the homologically trivial part of the Turaev–Viro invariant of degree $r=5$. Extensive tables for all closed irreducible orientable 3-manifolds of complexity less than or equal to six are explicitly presented. Similar tables for $r=3,4$ were composed by L. H. Kauffman and S. Lins. Bibl. 8 titles.
@article{ZNSL_1996_234_a9,
     author = {Sergei V. Matveev and Maxim V. Sokolov},
     title = {On a~simple invariant of {Turaev--Viro} type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {234},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a9/}
}
TY  - JOUR
AU  - Sergei V. Matveev
AU  - Maxim V. Sokolov
TI  - On a~simple invariant of Turaev--Viro type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 137
EP  - 142
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a9/
LA  - en
ID  - ZNSL_1996_234_a9
ER  - 
%0 Journal Article
%A Sergei V. Matveev
%A Maxim V. Sokolov
%T On a~simple invariant of Turaev--Viro type
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 137-142
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a9/
%G en
%F ZNSL_1996_234_a9
Sergei V. Matveev; Maxim V. Sokolov. On a~simple invariant of Turaev--Viro type. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 137-142. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a9/