On a~simple invariant of Turaev--Viro type
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 137-142
Voir la notice de l'article provenant de la source Math-Net.Ru
We define a 3-manifold invariant $t(M)=a+b\varepsilon$, where $a,b$ are integers and $\varepsilon=(1\pm\sqrt5)/2$. An advantage of the invariant is that it admits a very simple interpretation in terms of a fake surface and a simple geometric proof of the invariance. Actually, it coincides with the homologically trivial part of the Turaev–Viro invariant of degree $r=5$. Extensive tables for all closed irreducible orientable 3-manifolds of complexity less than or equal to six are explicitly presented. Similar tables for $r=3,4$ were composed by L. H. Kauffman and S. Lins. Bibl. 8 titles.
@article{ZNSL_1996_234_a9,
author = {Sergei V. Matveev and Maxim V. Sokolov},
title = {On a~simple invariant of {Turaev--Viro} type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--142},
publisher = {mathdoc},
volume = {234},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a9/}
}
Sergei V. Matveev; Maxim V. Sokolov. On a~simple invariant of Turaev--Viro type. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–1, Tome 234 (1996), pp. 137-142. http://geodesic.mathdoc.fr/item/ZNSL_1996_234_a9/